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3.1. Multiple and Extended Shear Band Formation in MgCuGd Metallic Glass during High Pressure 
Torsion 

Mg65Cu25Gd10 bulk metallic glass (BMG), containing a high density of intersecting extended shear bands (SBs), 
was fabricated from densification of amorphous powder via high pressure torsion (HPT).  The extended SBs, up 
to 400 nm in width and containing nanocrystalline (nc) structures, were studied using SEM and TEM.  The 
mechanisms responsible for the formation of the high density extended SBs are discussed and related to the 
high hydrostatic pressure and shear strains imposed during HPT of the BMGs. 

 
High-pressure torsion (HPT), one of severe plastic deformation (SPD) techniques, introduces large amounts of 
plastic deformation via rotation of a disk-shaped specimen under high pressures (typically higher than 4 GPa). 
The characteristics of HPT processing include high hydrostatic pressure and large superimposed shear strains 
(γ >1000, equivalent to true strain ε of 6.9, can be achieved) with a limited temperature increase (e.g., <283 K).   
 
Inspection of the literature reveals few studies describing HPT processing of BMGs, partly due to the poor 
formability and plasticity of BMGs at room temperature.  Different from crystalline metals, deformation via 
dislocation and twinning mechanisms is not possible in the case of BMGs.  BMGs deform in a highly localized 
mode, where a large amount of plastic strain is accumulated in very thin (~10 nm – 100 nm) narrow regions, 
known as shear bands (SBs), which are important in BMGs because the associated strain-softening leads to 
plastic instability during deformation.  It has also been reported that the formation of multiple SBs throughout a 
BMG sample can enhance its plasticity via the introduction of “plastically soft” regions.  Because each band 
contributes to the overall plasticity and none carry sufficient deformation to cause catastrophic failure, room 
temperature formability can be enhanced. 
  
In this research we report, for the first time, the synthesis of BMGs by consolidation of amorphous powder 
using HPT, paying particular attention to mechanisms governing the in-situ formation of a high density of 
extended SBs with nanocrystalline (nc) grains.  The objective of our study is to provide preliminary insight into 
the mechanisms that govern the initiation, activation and behavior of SBs formed during HPT, using SEM, 
TEM, and DSC results as the basis.  
 
In our experiments, gas atomized Mg65Cu25Gd10 amorphous powder, with an approximate size of 150 µm, was 
processed via HPT under a pressure of 6 GPa and five turns at room temperature.  The turning speed used in 
these experiments was 0.2 rpm.  BMG disks approximately 10 mm in diameter and 1 mm in thickness were 
prepared using this procedure.   
 
TEM studies were conducted on thin foils of the HPT processed MgCuGd BMGs and were prepared via 
mechanical grinding and polishing to a thickness of about 30 µm, followed by ion milling (Gatan PIPS-691) to 
a thickness suitable for electron transparency.  A Philips CM-12 transmission electron microscopy (TEM) was 
used for TEM micrograph and selected area electron diffraction (SAED) analysis.   
 
Figure 3.1.1 shows the SEM micrograph of the MgCuGd BMG disk, which was consolidated via HPT of gas 
atomized amorphous powder.  The SEM images were taken from positions near the upper surface (in contact 
with the rotating plunger) and near the center of the radius of HPTed BMG.  The absence of cracks and 
interfaces between particles was evident on the surface of HPTed BMG disks. Generally, it is difficult to 
achieve complete inter-particle metallurgical bonding between the metallic glass powders due to the presence of 
a surface oxide film, which acts as a diffusion barrier and limits the mass transfer.  In the case of HPT, however, 
the action of intense shear strains (about 150, equivalent to true strain ε of 5, for our samples) and normal 
compressive stresses (6 GPa) effectively disrupt surface oxides, thereby enhancing kinetics of interface 
metallurgical bonding formation between particles.  
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Figure 3.1.1(a) shows that there is a high density of SBs on the surface of HPTed MgCuGd BMGs.  Moreover, 
multiple-SBs can be discerned as vein patterns with different orientations. It was also observed that there are 
some primary SBs, with a thickness >100 nm, and a large amount of secondary SBs with a thickness <100 nm, 
as highlighted by arrows in Figures 1(a) and (b).  The secondary SBs appeared to have originated at primary 
SBs, and evolved with different orientations.  The patterns of primary and secondary SBs exhibit spacing of 1–2 
µm and 0.2–0.6 µm, respectively.  The presence of a high density of SBs can be rationalized on the basis of the 
imposition of high shear strains in combination with a high hydrostatic compression stress during HPT 
processing, which can suppress SB separation, and thereby avoid premature crack nucleation as in the case of 
tension.  Hence the presence of a high hydrostatic compression stress during HPT effectively promotes the 
formation of multiple SBs, which can better accommodate deformation.  
 
The origin of the observed network of SBs can be explained on the basis of the interactions between the SBs, 
which increase the local stress field and nucleate SB branches to release localized stress concentration and 
accommodate surrounding shear strains.  During HPT, SBs that are initiated in high stress or plastically soft 
regions are arrested in surrounding regions having a higher yield stress or stiffness, or at an intersecting SBs.  
This inhomogeneous mode of deformation occurs under conditions of high applied stresses and temperatures 
lower than Tg.  In the presence of a high hydrostatic compression stress, the primary SBs can grow continuously 
and carry the plastic strain without nucleating cracks.  Moreover, some small, wing-like branch bands were 
found along primary SBs, suggesting that the SB branches can grow and interact leading to the formation of a 
network that can sustain the overall strain during deformation. The primary SBs appear wavy, and the 
periodicity of the wave is about 0.2 to 0.6 µm, which is consistent with the observed interspace between 
secondary SBs. It was reported that the room temperature formability of BMGs can be enhanced by introducing 
“plastically soft” regions.  Hence, even though the plastic strain is localized in the SBs, the BMGs appear to 
deform in a macroscopically near-homogenous manner due to the formation and presence of a network of SBs.  
In fact, during initial loading, the formation of SBs will contribute to the overall plastic deformation of the 
powders, whereas after full densification is achieved, the network of SBs (as soft regions) enhances the overall 
plasticity of the BMG. 
 
Deformation during HPT is highly localized in the SBs, leaving most of the sample un-deformed.  The TEM 
images of the HPTed MgCuGd BMG, shown in Figure 3.1.2, were taken from positions corresponding to the 
center of the HPTed BMG, both in thickness and radial directions.  The corresponding histograms for the 
thickness of SBs and grain size distributions of crystals in SBs are also shown in Figure 3.1.2 (a) and (b), 
respectively.  The TEM bright field images reveal the presence of a featureless amorphous phase.  Neither 
precipitates nor any type of phase contrast was evident in these amorphous regions of the sample.  In addition to 
revealing the presence of a high density of SBs in the TEM images of the HPT processed MgCuGd BMGs, the 
extended SBs were measured to have thickness values that ranged from 50 nm to 400 nm, and an average of 
214 nm; this is in contrast to published work which reports shear-band thickness values of 10–20 nm.  
 
The physical characteristics of the SBs provide insight into the deformation of the MgCuGd BMG during HPT.  
In related work, it was reported that the formation of SBs results local planar heating, which can cause local 
heating above Tg, crystallization as shown in Figure 3.1.2.  The temperature profile, ΔT, as a function of t and of 
distance x from the SBs can be determined from: 

                                                                            (1) 
where H is the heat content, ρ is the density of the material, C the specific heat and α the thermal diffusivity.  
The local heating at a SB results in a normal distribution in the temperature profile along the cross-section of a 
SB.  The temperature rise at the center of SBs, Tcenter, when shear stops (at t =0) can be expressed by: 

                                                         (2) 
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where δt is the duration of shear at relative velocity V giving a shear offset y=Vδt.  The corresponding estimate 
of Tcenter is over thousand K, and the thermal diffusion length 2(αt)1/2, doubled to give a total width 100–300 
nm.  When high local heating reaches Tg or Tx, viscosity inside the SBs suddenly decreases, resulting in 
superplastic deformation of the metallic glass localized into SBs.  In conventional uniaxial tensile and 
compressive deformation, the initiation and propagation of SBs is generally instantaneous leading to 
catastrophic brittle failure of BMGs; hence there is not sufficient time for the SB’s thickness to increase.  In 
contrast, the presence of a high hydrostatic pressure during HPT effectively suppresses crack nucleation and 
continuous shear deformation in the SBs causes local heating, which promotes thickening of the SBs and 
localized crystallization of nc grains (<100 nm) in the extended SBs.  
 
It is worth noting that close inspection of the extended SBs reveal the presence of nc grains with an approximate 
size of 62 nm, as shown in Figure 3.1.2(b).  The nc grains are responsible for the rings in the selected area 
electron diffraction (SAED) pattern shown in the inset figure.  The presence of these nc grains within the SBs 
can be attributed to local planar heating generated during highly localized shear deformation.  Moreover, it was 
also observed that there were some sub-SBs in the vicinity of the interface formed between the crystallites and 
the amorphous matrix in the primary extended SBs.  Figure 3.1.2(c) shows a high magnification view of four 
sub-SBs located inside one SB, approximately 400 nm thick.  The thickness of sub-SBs ranges from 15 nm to 
45 nm, and increases as one moves from the center to the edge of the SBs.  Extended exposure to high localized 
heating in the vicinity of SBs during HPT results in crystallization of a high density of nc grains in the primary 
SBs.  Consequently, shear deformation remains localized in these extended and crystallized SBs, and promotes 
the formation of sub-SBs as illustrated in Figure 3.1.2(c).   
 
The observed increase in density and thickness of SBs as a function of radial distance from the center of the 
HPT sample is consistent with the associated increase in strain towards the edge of the disk.  The nominal 
effective shear strain can be estimated on the basis of the following equation: γ=2πRN/t, equivalent to true 
accumulated strain ε=ln(2πRN/t), where N is the number of rotations, R is the distance from the center of the 
rotation, and t is the thickness.  The deformation shear strain increases from the center to the edge of an HPT 
processed BMG disk; decreases with increasing sample thickness; and increases with increasing number of HPT 
turns.  It then follows that the density and thickness of SBs increase with increasing number of HPT turns.   
 
Figure 3.1.3(a) shows DSC trace patterns corresponding to as-atomized MgCuGd powders and HPT processed 
BMGs, as determined using a heating rate of 20 K/min.  The glass transition temperatures, Tg, reveal only a 
negligible increase, whereas the crystallization onset temperature, Tx decreases significantly after HPT 
processing.  Tx decreases from 479 K to 460 K for the HPT processed MgCuGd BMG.  It is likely that structural 
relaxation occurred in the HPT processed BMGs as Tx decreased, which is a result of the strain energy 
introduced during HPT processing before crystallization eventually occurs.  The physical mechanism of 
structural relaxation in BMGs involves stress relief, atomic movement and the annihilation of excess free 
volume.  Both high pressure and shear deformation during HPT can promote short-range atomic rearrangement 
in BMGs by reducing the free volume.  We propose that in our experiments, SB formation was assisted by the 
extreme localization of shear in terms of a structural change, a temperature rise, and a local viscosity decrease in 
the bands.  It is known that there are three stages for initial SB formation: the multiplication of free volume; the 
coalescence of free volume and formation of voids; and the final fast propagation of SBs/cracks.  Therefore, the 
formation of SBs is also closely related to local structural relaxation, which is consistent with our results.  For 
HPTed BMG disc, it is also interesting to note that there is two-step crystallization, which may be rationalized 
as precipitation of other intermetallic compounds from the amorphous phase in addition to structural relaxation, 
and requires additional work.   
 
Because of the sample size and geometry, only micro-indentation deformation studies with different applied 
loads, 50 g to 1000 g, were carried out.  Results show that indentation size increases linearly with applied load.  
An average Vickers micro-hardness value of approximately 306 HV was obtained from measurements across 
the HPTed MgCuGd disk, which corresponds to an approximate strength of 1000 MPa from micro-hardness 
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values.  It is interesting to note that no cracks were evident in the samples, even for large indents obtained with 
a 1000 g load force, as shown in Figure 3.1.3(b).  This apparent ductility may be rationalized based on the 
presence of existing multiple SBs, which contribute to shear softening, and therefore, plasticity during 
indentation.  It is well known that crystalline metallic materials can exhibit high macroscopic plastic 
deformation due to multiple cross slip.  Similarly, our results suggest that it is possible to introduce large 
amounts of plasticity into BMGs by generating a high density of multiple and interacting SBs under a high 
superimposed hydrostatic stress, as shown in Figures 3.1.1 and 3.1.2.   
 
Figure 3.1.4 provides a schematic diagram illustrating the influence of shear deformation during HPT on the 
resultant stress-strain response, and can be described as follows.  In the case of a primarily tensile stress state, 
SBs nucleate and rapidly evolve into cracks without much growth, resulting in catastrophic brittle failure before 
yielding (a).  In the case of a uniaxial compressive stress state (b), thin SBs nucleate in the BMG matrix, and 
continue to deform to slightly beyond yielding due to compressive stress confining the shear band.  Finally, in 
the case of a high superimposed hydrostatic compressive stress (c), such as HPT, multiple extended SBs 
nucleate in the BMG matrix and continue to deform and interact during deformation, possibly even leading to 
strain-softening.  
 
In summary, Mg-based MgCuGd BMGs were successfully fabricated via HPT consolidation directly from gas 
atomized powders.  A high density of extended SBs containing nc grains developed during HPT of MgCuGd 
BMG, and this phenomenon was attributed to the combination of intense shear deformation under an imposed 
hydrostatic pressure.  
 

  
(a)               (b) 

Figure 3.1.1. High density of SBs in HPT processed MgCuGd BMG (a) low magnification SEM image, and (b) 
magnified SEM image. 
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(a) 

  
(b) 

 
(c) 

Figure 3.1.2. Extended SBs in in HPT processed MgCuGd BMG: (a) low magnification TEM image with 
SAED pattern and histograms for SB thickness, (b) magnified TEM image of local SB with SAED pattern and 
histograms for grain size of crystals, and (c) sub-SBs inside extended SBs. 
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Figure 3.1.3.  (a) DSC patterns of HPT processed bulk MgCuGd BMG compared with starting MgCuGd powder, 
and (b) Vickers microhardness indentation with 1000 g load force. 
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Figure 3.1.4.  Illustration of SB evolution in BMGs as a function of shear strain and stress states with (a) tensile 
stress, (b) uniaxial compressive stress, and (c) hydrostatic compressive stress, such as HPT. 
 
3.2 Prism stacking faults observed contiguous to a {10-12} twin in a Mg–Y alloy 
 
In view of the lack of fundamental understanding on the interactions between SFs and twins, and prism 
dislocation activity in Mg–Y alloys, we studied an Mg–Y alloy to provide experimental insight into non-basal 
deformation modes, e.g. twinning and prism slip/stacking faults, and their possible interactions. Mg–2.5 at.% Y 
alloy powder was synthesized by melting Mg–30 wt.% Y master alloy with pure Mg at 800 °C, followed by gas 
atomization in an Ar atmosphere. After hot vacuum degassing, the powder was consolidated via hot isostatic 
pressing and extrusion (reduction ratio 10:1) at 350 °C, resulting in a fine-grained (FG) Mg–Y alloy (grain size 
1–2 µm). Cylindrical specimens, 5 mm in diameter and 7 mm in height, were machined and polished for 
compression along the extrusion direction (ED) at a strain rate of 10-3 s-1 and at room temperature. The FG Mg–
Y exhibited a yield stress of ~310 MPa, an ultimate compression stress of ~430 MPa and a strain to failure of 
~22%. In this study, we specifically focus on a specimen that was deformed to ~2% strain along the ED. Thin 
foils for transmission electron microscopy (TEM) studies (JEOL JEM 2500 SE, 200 kV) were ground to a 
thickness of ~30 µm, followed by ion milling until perforation. 
 
It is well known that, when compressed along the ED, {10-12} deformation twins form readily in Mg alloys 
[10-11]. Figure 3.2.1 shows part of a microsized grain in a sample compressed to ~2% strain along ED. The 
grain was observed in the <1-21-3> zone axis (Fig. 3.2.1b). There is an obvious band-like region with white 
contrast (Fig. 3.2.1a), indicating the presence of {10-12} deformation twins. There is also a high density of line 
contrast within the twin (region B in Fig. 3.2.1a), suggesting the presence of basal plane SFs.  
 
To study the twin boundaries (TBs) and SFs in more detail, dark-field (DF) images (Fig. 3.2.1d and f) were 
obtained using the 10-10 diffraction spot in Figure 3.2.1b. In this format, the parent grain will appear bright 
whereas the {10-12} twin will appear dark. Comparing the DF images (d and f in Fig. 3.2.1) with the 
corresponding bright-field (BF) images (c and e in Fig. 3.2.1), one can clearly see the nearly straight TBs 
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(marked as dashed yellow lines). Interestingly, SFs not only lie in the twin, but also extend into the parent grain 
(e.g. SFs highlighted by yellow and red arrows in Fig. 3.2.1e) – although, for the parent grain, the (0001) basal 
plane cannot be viewed from the <1-21-3> zone axis. Instead, the orientation of the SFs in the parent grain 
aligns with that of (10-10) prism planes, as evidenced by the diffraction pattern in Figure 3.2.1b. Accordingly, 
one may conclude two observations: first, there are indeed SFs located inside the parent grain, and second these 
are prism SFs.   
 
It is important to note, however, that the dashed yellow lines which highlight the TBs in the BF–DF TEM 
analysis represent an approximate location of TBs for the following reasons. First, since the twinned region is 
not close to any zone axis, it is very difficult to observe the TBs precisely edge-on in TEM. Second, a twin is a 
three-dimensional structure, so it is possible for the twin to be inclined to the viewing plane (e.g. (1-21-3)), and 
thereby overlap with the parent grain in the projected TEM view. Third, real TBs can deviate significantly from 
the ideal {10-12} twin plane in deformed hcp materials, which is probably due to the steps created by twin–slip 
interaction.  
 
Therefore, to provide additional experimental evidence to the suggestion that there are SFs on the (10-10) prism 
planes in the parent grain, as opposed to the possibility that these are overlapping basal SFs in the {10-12} twin 
with the parent grain, we employed high-resolution TEM (HRTEM) and fast Fourier transformation (FFT). In 
reciprocal space, an SF will resemble a slender rod in appearance. Figure 3.2.2 shows the HRTEM image of 
some SFs in the parent grain (e.g. region A in Fig. 3.2.1e). Figure 3.2.2b and d are FFT images for selected 
areas (red squared areas I and III in Fig. 3.2.2a) containing no SFs, and they are the same pattern as the 
diffraction pattern in Figure 3.2.1b, i.e. these areas are indeed at the h1-213i zone axis. For the selected area 
(SA) II, which contains the tip of one SF, the FFT shows streaking (highlighted by red arrows in Fig. 3.2.2c) 
that connects spots for the (-1010) and (10-10) planes. These observations support the suggestion that the SFs in 
Figure 3.2.2a are indeed prism SFs. Furthermore, Figure 3.2.2e is the inverse FFT image for SA II in Figure 
3.2.2a, and it was obtained by selecting the -1010 and 10-10 pair spots; therefore it shows the (10-10) atomic 
planes. It is noted that there is no extra half (10-10) plane in Figure 3.2.2e, which indicates that the prism SFs 
are the results of Shockley partial activity in (10-10) planes. 
 
At low magnification, the contrast for SFs in the twin and parent grain appears to be similar; namely, when 
crossing the TB, the change in contrast for two types of SFs is barely perceptible. However, when observed at 
high resolution at the same <1-21-3> zone axis for the parent grain, as evident in Figure 3.2.3a, the contrast for 
basal planes and basal SFs in the {10-12} twin (e.g. region B in Fig. 3.2.1e) is diffuse and unclear, unlike the 
contrast for prism planes and SFs in the parent grain (e.g. Fig. 3.2.2a). Figure 3.2.3b shows the FFT for a 
selected area in Figure 3.2.3a (red square) containing basal SFs, and the blue arrows indicate the streaking 
caused by basal SFs. This suggests that, in the {10-12} twin, the basal planes and SFs are near edge-on, whereas 
other planes are not. 
 
Experimental observations of prism SFs in other hcp materials, e.g. Ti and Zr, were first reported several 
decades ago. However, this is the first direct TEM observation of prism SFs in hcp Mg alloys. It is also worth 
noting that prism SFs were only observed in the vicinity of the {10-12} twin (e.g. area A and C in Fig. 3.2.1c); 
there is no such contrast anywhere away from the {10-12} twin. Therefore, to understand the underlying 
mechanism(s) responsible for the formation of these prism SFs, the relationship between prism SFs in the parent 
grain and basal SFs in {10-12} twin was investigated, as discussed below. 
 
Niewczas [1] calculated the mathematical transformation matrices required to link the parent lattice with 
twinned lattice for hcp crystals. This makes it possible to quantitatively calculate the misorientation between a 
plane in the parent grain and a plane in a twinned lattice. For example, for a (-1012) [10-11] twin, the 
misorientation between the (10-10) prism planes in the parent grain ((10-10)P) and the (000 1) basal planes in 
the twin ((0 001)T) was calculated to be ~2°. This calculated value is consistent with our observation that, when 
the prism SFs/(10-10)P in the parent grain are located edge-on at <1-21-3> zone axis (Fig. 3.2.2c), the contrast 
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of basal SFs/(0001)T in the twin can also be seen (e.g. region B in Fig. 3.2.1c). This confirms the suggestion 
that the twin studied here is indeed a {10-12} twin – specifically, a (-1012) [10,11] twin variant. 
 
Niewczas [1] also summarized the possible relationship between slip systems in a {10-12} twin and that in the 
parent grain from a geometrical standpoint. It is noted that (10-10)[-12-10] prism slip in the parent grain can be 
“transformed” to (0001) [1-210] basal slip in a (-1012) [10-11] twin. It then follows that (0001) [1-210] basal 
slip in a {10-12} twin could probably be transformed to (10-10)[-12-10] prism slip in the parent grain as well. 
Serra and Bacon [2] used computational simulations to predict the possible interaction of 1/3 <1-210> screw 
dislocation with TBs in hcp materials. They concluded that, in hcp Mg, it is possible for a 1/3 <1-210> screw 
dislocation in basal plane to propagate across a {10-12} TB and remain in the prism plane near the TB. In our 
study, careful examination of the configuration of SFs in the vicinity of the {10-12} twin reveals that there are 
multiple types of SFs: prism SFs (e.g. those highlighted by red arrows in Fig. 3.2.1e), basal SFs (e.g. 
highlighted by blue arrows in Fig. 3.2.1c) and “compound SFs” – namely, SFs with one end in the parent grain 
and the other end in the twin (e.g. SFs highlighted by yellow arrows in Fig. 3.2.1e). In addition, in Figure 3.2.1e 
there are also SFs spanning from the left part of the parent grain across the entire twin to the right part of the 
parent grain. These results probably suggest very dynamic partial dislocation activity across the TBs. 
 
On the basis of the above discussion, together with the fact that there is no extra half atom plane in Figure 
3.2.2e, it is proposed that the prism SFs observed here are the results of dissociated 1/3 h1-210i dislocations 
transmitted from (0001)T to (10-10)P. Figure 3.2.4 provides schematic illustrations of the proposed partial 
dislocation mechanisms. First, due to the reduced basal stacking fault energy by the alloying element Y and the 
twinning deformation, there are basal SFs in {10-12} twins bounded by 1/3 <1-100> Shockley partials, as 
shown in Figure 3.2.4a. Then, during incremental deformation, as shown in Figure 3.2.4b, some leading partials 
start to transmit through the TB to prism planes in the parent grain, while the trailing partials may also transmit 
(resulting in prism SFs) or remain in the twin (resulting in compound SFs). This transmission is geometrically 
possible because the three planes involved herein, namely (0001)T, (10-10)P and the twin plane (-1012), share 
the same intersection line [1-210].  Therefore, for example, a 1/3[1-100] partial dislocation in (0001)T can glide 
to TB, cross the [1-210] intersection line and get into (10-10)P; due to the change in indexation [1], this partial 
would assume a Burgers vector of 1/3[-1100]. It is noted that whether the leading and/or trailing partials 
transmit through TBs or not depends largely on the local stress concentration at the TBs, so different partials 
would behave differently – resulting in multiple configurations of SFs, as discussed above. However, the stress 
required for the partial dislocations to move further into prism planes is probably much higher than that in basal 
planes, since it is the case for 1/3 <1-210> full dislocations. This, we believe, is the reason why prism SFs were 
only observed in the vicinity of the {10-12} twin. 
 
In this study, SFs can be considered as “markers” that can trace the activity of partial dislocations. However, it 
is also possible for full 1/3 <1-210> basal dislocations in a {10-12} twin to transmit to prism planes in the 
parent grain. This suggests that twinning in Mg and Mg alloys is a very dynamic and complex process, which 
involves interaction between (partial) dislocations, TBs and SFs. Particularly, the possible transmission of 
(partial) dislocations through TBs should be examined, for it could make deformation more compatible [1]. In 
addition, both basal SFs and prism SFs can serve as barriers for slip in other planes, resulting in strengthening.  
For example, prism SFs can impede the easy basal slip in Mg and Mg alloys. Therefore, the Mg and hcp 
materials research community probably needs to take a more comprehensive approach to better understand the 
underlying deformation mechanisms. 
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Figure 3.2.1. (a) Part of a microsized grain. (b) Selected area electron diffraction pattern of the parent grain. (c, 
e) Bright-field images for the {10-12} twin in (a). (d, f) Corresponding dark-field images for the same areas in 
(c) and (e), respectively. 
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Figure 3.2.2. (a) HRTEM for prism stacking faults in the parent grain. (b–d) Selected area FFT around an SF. (e) 
Inverse FFT showing the {10-10} prism planes in area III. 
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Figure 3.2.3. (a) Diffuse and unclear basal planes and SFs in a {10-12} twin. (b) FFT for a selected area in (a) 
(red square) containing basal SFs. (For interpretation of the references to colour in this figure legend, the reader 
is referred to the web version of this article.) 
 

 
Figure 3.2.4. Schematics for formation of prism SFs. 
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